Anytime search in dynamic graphs
نویسندگان
چکیده
Agents operating in the real world often have limited time available for planning their next actions. Producing optimal plans is infeasible in these scenarios. Instead, agents must be satisfied with the best plans they can generate within the time available. One class of planners well-suited to this task are anytime planners, which quickly find an initial, highly suboptimal plan, and then improve this plan until time runs out. A second challenge associated with planning in the real world is that models are usually imperfect and environments are often dynamic. Thus, agents need to update their models and consequently plans over time. Incremental planners, which make use of the results of previous planning efforts to generate a new plan, can substantially speed up each planning episode in such cases. In this paper, we present an A^*-based anytime search algorithm that produces significantly better solutions than current approaches, while also providing suboptimality bounds on the quality of the solution at any point in time. We also present an extension of this algorithm that is both anytime and incremental. This extension improves its current solution while deliberation time allows and is able to incrementally repair its solution when changes to the world model occur. We provide a number of theoretical and experimental results and demonstrate the effectiveness of the approaches in a robot navigation domain involving two physical systems. We believe that the simplicity, theoretical properties, and generality of the presented methods make them well suited to a range of search problems involving dynamic graphs.
منابع مشابه
Action Selection for MDPs: Anytime AO* Versus UCT
In the presence of non-admissible heuristics, A* and other best-first algorithms can be converted into anytime optimal algorithms over OR graphs, by simply continuing the search after the first solution is found. The same trick, however, does not work for best-first algorithms over AND/OR graphs, that must be able to expand leaf nodes of the explicit graph that are not necessarily part of the b...
متن کاملAction Selection for MDPs: Anytime AO* vs. UCT
In the presence of non-admissible heuristics, A* and other best-first algorithms can be converted into anytime optimal algorithms over OR graphs, by simply continuing the search after the first solution is found. The same trick, however, does not work for best-first algorithms over AND/OR graphs, that must be able to expand leaf nodes of the explicit graph that are not necessarily part of the b...
متن کاملAnytime Dynamic A*: An Anytime, Replanning Algorithm
We present a graph-based planning and replanning algorithm able to produce bounded suboptimal solutions in an anytime fashion. Our algorithm tunes the quality of its solution based on available search time, at every step reusing previous search efforts. When updated information regarding the underlying graph is received, the algorithm incrementally repairs its previous solution. The result is a...
متن کاملInformed Asymptotically Optimal Anytime Search
Path planning in robotics often requires finding high-quality solutions to continuously valued and/or high-dimensional problems. These problems are challenging and most planning algorithms instead solve simplified approximations. Popular approximations include graphs and random samples, as respectively used by informed graph-based searches and anytime sampling-based planners. Informed graph-bas...
متن کاملAlgorithms for Real-Time Game-Tree Search for Hybrid System Control
This paper describes four algorithms for real-time game-tree search for hybrid system control. A hybrid system control game is a hybrid system with discretely and continuously evolving scores, and an enabled action set for each player. As computational speed increases, we can expect simulation to become more useful for informing control decisions in real-time. To this end, we seek to extend exi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Artif. Intell.
دوره 172 شماره
صفحات -
تاریخ انتشار 2008